Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Microorganisms ; 12(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38257927

RESUMO

The aim of the study was to investigate the effect of antimicrobial peptides (AMPs) Hylin-a1, KR-12-a5, and Temporin-SHa in Candida albicans as well as the biocompatibility of keratinocytes spontaneously immortalized (NOK-si) and human gingival fibroblasts (FGH) cells. Initially, the susceptible (CaS-ATCC 90028) and fluconazole-resistant (CaR-ATCC 96901) C. albicans strains were grown to evaluate the effect of each AMP in planktonic culture, biofilm, and biocompatibility on oral cells. Among the AMPs evaluated, temporin-SHa showed the most promising results. After 24 h of Temporin-SHa exposure, the survival curve results showed that CaS and CaR suspensions reduced 72% and 70% of cell viability compared to the control group. The minimum inhibitory/fungicide concentrations (MIC and MFC) showed that Temporin-SHa was able to reduce ≥50% at ≥256 µg/mL for both strains. The inhibition of biofilm formation, efficacy against biofilm formation, and total biomass assays were performed until 48 h of biofilm maturation, and Temporin-SHa was able to reduce ≥50% of CaS and CaR growth. Furthermore, Temporin-SHa (512 µg/mL) was classified as non-cytotoxic and slightly cytotoxic for NOK-si and FGH, respectively. Temporin-SHa demonstrated an anti-biofilm effect against CaS and CaR and was biocompatible with NOK-si and FGH oral cells in monolayer.

2.
J Vis Exp ; (200)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37955385

RESUMO

Antimicrobial Photodynamic Therapy (aPDT) has been extensively investigated in vitro, and preclinical animal models of infections are suitable for evaluating alternative treatments prior to clinical trials. This study describes the efficacy of aPDT in a murine model of oral candidiasis. Forty mice were immunosuppressed with subcutaneous injections of prednisolone, and their tongues were inoculated using an oral swab previously soaked in a C. albicans cell suspension. Tetracycline was administered via drinking water during the course of the experiment. Five days after fungal inoculation, mice were randomly distributed into eight groups; a ninth group of untreated uninfected mice was included as a negative control (n = 5). Three concentrations (20 µM, 40 µM, and 80 µM) of a mixture of curcuminoids were tested with a blue LED light (89.2 mW/cm2; ~455 nm) and without light (C+L+ and C+L- groups, respectively). Light alone (C-L+), no treatment (C-L-), and animals without infection were evaluated as controls. Data were analyzed using Welch's ANOVA and Games-Howell tests (α = 0.05). Oral candidiasis was established in all infected animals and visualized macroscopically through the presence of characteristic white patches or pseudomembranes on the dorsum of the tongues. Histopathological sections confirmed a large presence of yeast and filaments limited to the keratinized layer of the epithelium in the C-L- group, and the presence of fungal cells was visually decreased in the images obtained from mice subjected to aPDT with either 40 µM or 80 µM curcuminoids. aPDT mediated by 80 µM curcuminoids promoted a 2.47 log10 reduction in colony counts in comparison to those in the C-L- group (p = 0.008). All other groups showed no statistically significant reduction in the number of colonies, including photosensitizer (C+L-) or light alone (C-L+) groups. Curcuminoid-mediated aPDT reduced the fungal load from the tongues of mice.


Assuntos
Anti-Infecciosos , Candidíase Bucal , Fotoquimioterapia , Camundongos , Animais , Candidíase Bucal/tratamento farmacológico , Candidíase Bucal/microbiologia , Candidíase Bucal/patologia , Candida albicans , Diarileptanoides/uso terapêutico , Modelos Animais de Doenças , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Biofilmes
3.
Front Microbiol ; 14: 1132781, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152758

RESUMO

Nanocarriers have been successfully used to solubilize, deliver, and increase the bioavailability of curcumin (CUR), but slow CUR release rates hinder its use as a topical photosensitizer in antimicrobial photodynamic therapy. A photo-responsive polymer (PRP) was designed for the light-triggered release of CUR with an effective light activation-dependent antimicrobial response. The characterization of the PRP was compared with non-responsive micelles comprising Pluronics™ P123 and F127. According to the findings, the PRP formed photo-responsive micelles in the nanometric scale (< 100 nm) with a lower critical micelle concentration (3.74 × 10-4 M-1, 5.8 × 10-4 M-1, and 7.2 × 10-6 M-1 for PRP, F127, P123, respectively, at 25°C) and higher entrapment efficiency of CUR (88.7, 77.2, and 72.3% for PRP, F127, and P123 micelles, respectively) than the pluronics evaluated. The PRP provided enhanced protection of CUR compared to P123 micelles, as demonstrated in fluorescence quenching studies. The light-triggered release of CUR from PRP occurred with UV light irradiation (at 355 nm and 25 mW cm-2) and a cumulative release of 88.34% of CUR within 1 h compared to 80% from pluronics after 36 h. In vitro studies showed that CUR-loaded PRP was non-toxic to mammal cell, showed inactivation of the pathogenic microorganisms Candida albicans, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus, and decreased biofilm biomass when associated with blue light (455 nm, 33.84 J/cm2). The findings show that the CUR-loaded PRP micelle is a viable option for antimicrobial activity.

4.
J Fungi (Basel) ; 9(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37233287

RESUMO

This study assessed the effect of zerumbone (ZER) against fluconazole-resistant (CaR) and -susceptible Candida albicans (CaS) biofilms and verified the influence of ZER on extracellular matrix components. Initially, to determine the treatment conditions, the minimum inhibitory concentration (MIC), the minimum fungicidal concentration (MFC) and the survival curve were evaluated. Biofilms were formed for 48 h and exposed to ZER at concentrations of 128 and 256 µg/mL for 5, 10 and 20 min (n = 12). One group of biofilms did not receive the treatment in order to monitor the effects. The biofilms were evaluated to determine the microbial population (CFU/mL), and the extracellular matrix components (water-soluble polysaccharides (WSP), alkali-soluble polysaccharides (ASPs), proteins and extracellular DNA (eDNA), as well as the biomass (total and insoluble) were quantified. The MIC value of ZER for CaS was 256 µg/mL, and for CaR, it was 64 µg/mL. The survival curve and the MFC value coincided for CaS (256 µg/mL) and CaR (128 µg/mL). ZER reduced the cellular viability by 38.51% for CaS and by 36.99% for CaR. ZER at 256 µg/mL also reduced the total biomass (57%), insoluble biomass (45%), WSP (65%), proteins (18%) and eDNA (78%) of CaS biofilms. In addition, a reduction in insoluble biomass (13%), proteins (18%), WSP (65%), ASP (10%) and eDNA (23%) was also observed in the CaR biofilms. ZER was effective against fluconazole-resistant and -susceptible C. albicans biofilms and disturbed the extracellular matrix.

5.
Biofouling ; 39(1): 94-109, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36916295

RESUMO

The present study aimed to evaluate the effectiveness of hydrogen peroxide (H2O2) combined with antimicrobial photodynamic therapy (aPDT) on biofilms formed by Candida albicans strains which are either susceptible to or resistant to fluconazole. Biofilms were grown and treated with H2O2, followed by the application of Photodithazine® (P) and red light-emitting diode (LED) (L) either separately or combined (n = 12). After the treatment, biofilms were evaluated by estimating colony-forming unit ml-1, extracellular matrix components [water -soluble and -insoluble polysaccharides, proteins, extracellular DNA (eDNA)], biomass (total and insoluble dry-weight), and protein concentration. Biofilms formed by both strains presented a significant reduction in cell viability, biomass, extracellular matrix components (both types of polysaccharides, eDNA), and proteins (in the soluble and insoluble portion of biofilms) compared to the control. Microscopy images of the biofilms after treatments showed disarticulation of the matrix and scattered fungal cells. The application of H2O2 can disturb the organization of the extracellular matrix, and its association with aPDT potentiated the effect of the treatment.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Candida albicans , Peróxido de Hidrogênio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Biofilmes , Fotoquimioterapia/métodos
6.
J Fungi (Basel) ; 9(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675932

RESUMO

This study aimed to evaluate the potential of successive applications of sub-lethal doses of the antimicrobial photodynamic therapy (aPDT) mediated by Photodithazine® (PDZ) and curcumin (CUR) associated with LED in the viability, reactive oxygen species (ROS) production, and gene expression of Candida albicans. The microbial assays were performed using planktonic cultures and biofilms. Ten successive applications (Apl#) were performed: aPDT (P+L+; C+L+), photosensitizer (P+L-; C+L-), and LED (P-L+; C-L+). Control groups were used (P-L-; C-L-). The viability of C. albicans was determined by cultivating treated cultures on agar plates with or without fluconazole (FLU). In addition, the ROS detection and expression of SOD1, CAP1, and ERG11 genes were determined. For planktonic cultures, no viable colonies were observed after Apl#3 (without FLU) and Apl#2 (with FLU) for either photosensitizer. Biofilm treated with P+L+ resulted in the absence of cell viability after Apl#7, while C+L+ showed ~1.40 log10 increase in cell viability after Apl#2, regardless of FLU. For both photosensitizers, after the last application with viable colonies, the production of ROS was higher in the biofilms than in the planktonic cultures, and SOD1 expression was the highest in P+L+. A reduction of CAP1 and ERG11 expression occurred after P+L+, regardless of FLU. C+L+ had a higher level of ROS, and the treatments were non-significant for gene expression. Sub-lethal doses of aPDT mediated by CUR could induce C. albicans resistance in biofilms, while C. albicans cells in biofilms were susceptible to aPDT mediated by PDZ.

7.
Oral Dis ; 29(4): 1855-1867, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35133698

RESUMO

OBJECTIVE: This study evaluated the effectiveness of DNase I combined with antimicrobial photodynamic therapy, mediated by Photodithazine® and light-emitting diode light, against biofilms formed by a fluconazole-resistant Candida albicans strain (ATCC 96901) and two clinical isolates (R14 and R70). MATERIALS AND METHODS: Biofilms were grown for 48 h and exposed to DNase for 5 min, followed by application of a photosensitizer (P) and light (L), either singly or combined (P+L+, P-L+, P+L-, P-L-, P-L-DNase, P+L+DNase, P+L-DNase, and P-L+DNase; n = 12). Biofilm analysis included quantification of extracellular matrix components (water-soluble and insoluble polysaccharides, proteins and extracellular DNA), and biomass (total and insoluble), as well as the enumeration of colony-forming units. The data were analyzed using three-way analysis of variance with Bonferroni's post hoc test. RESULTS: The DNase treatment combined with aPDT showed a reduction of 1.92, 1.65, and 1.29 log10 of cell viability compared with untreated controls for ATCC 96901, R14, and R70 strains, respectively. It also reduced extracellular matrix contents of water-soluble polysaccharides (36.3%) and extracellular DNA (72.3%), as well as insoluble biomass content (43.3%). CONCLUSION: The three strains showed similar behavior when treated with DNase, and the extracellular matrix components were affected, improving the effectiveness of antimicrobial photodynamic therapy.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Fluconazol/farmacologia , Candida albicans , Desoxirribonucleases/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Desoxirribonuclease I , Biofilmes
8.
Rev. odontol. UNESP (Online) ; 52: e20230028, 2023. tab
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1530302

RESUMO

Introduction: the use of light emitting diodes (LED) in domestic and public vias have increased in the last 20 years. In addition, the LED light has been used as a light source for medical applications. Objective: since humans are increasingly exposed to LEDs, there is an urgency to investigate the possible biological effects on tissues caused by this exposure. So, researchers have been focused their investigations in the application of this light in the health field. Material and method: in this review, a search in important databases was performed on the biological effects caused after application of different LED light protocols in in vitro and in vivo studies. Result: although most published papers have shown positive results, some of them reported negative biological effects of light LEDs technology on humans' cells/tissues. Conclusion: therefore, the comprehension of the biological effects caused by light LEDs will provide a better assessment of the risks involved using this technology.


Introdução: o uso de diodos emissores de luz ("LED") em vias domésticas e públicas tem aumentado nos últimos 20 anos. Além disso, a luz LED tem sido usada para aplicações médicas. Objetivo: pelo fato de seres humanos estarem cada vez mais expostos aos LEDs, há urgência em investigar os possíveis efeitos biológicos nos tecidos causados por esta exposição. Assim, pesquisadores têm focado suas investigações no uso desta luz na área da saúde. Material e método: nesta revisão foi realizada uma pesquisa em bancos de dados conceituados sobre os efeitos biológicos causados após aplicação de diferentes protocolos de luz LED em estudos in vitro e in vivo. Resultado: embora a maioria dos artigos publicados tenham mostrado resultados positivos, alguns deles relataram efeitos biológicos negativos da tecnologia de LEDs nas células/tecidos humanos. Conclusão: portanto, a compreensão dos efeitos biológicos causados pela luz LED proporcionará uma melhor avaliação dos riscos envolvidos no uso desta tecnologia.


Assuntos
Fototerapia , Tecidos , Técnicas In Vitro , Área Programática de Saúde , Células , Lasers Semicondutores , Luzes de Cura Dentária
9.
Front Microbiol ; 14: 1274201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188579

RESUMO

The study evaluated the association of DNase I enzyme with antimicrobial photodynamic therapy (aPDT) in the treatment of oral candidiasis in mice infected with fluconazole-susceptible (CaS) and -resistant (CaR) Candida albicans strains. Mice were inoculated with C. albicans, and after the infection had been established, the tongues were exposed to DNase for 5 min, followed by photosensitizer [Photodithazine®(PDZ)] and light (LED), either singly or combined. The treatments were performed for 5 consecutive days. Treatment efficacy was evaluated by assessing the tongues via fungal viable population, clinical evaluation, histopathological and fluorescence microscopy methods immediately after finishing treatments, and 7 days of follow-up. The combination of DNase with PDZ-aPDT reduced the fungal viability in mice tongues immediately after the treatments by around 4.26 and 2.89 log10 for CaS and CaR, respectively (versus animals only inoculated). In the fluorescence microscopy, the polysaccharides produced by C. albicans and fungal cells were less labeled in animals treated with the combination of DNase with PDZ-aPDT, similar to the healthy animals. After 7 days of the treatment, DNase associated with PDZ-aPDT maintained a lower count, but not as pronounced as immediately after the intervention. For both strains, mice treated with the combination of DNase with PDZ-aPDT showed remission of oral lesions and mild inflammatory infiltrate in both periods assessed, while animals treated only with PDZ-aPDT presented partial remission of oral lesions. DNase I enzyme improved the efficacy of photodynamic treatment.

10.
Pharmaceutics ; 14(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36297486

RESUMO

Antimicrobial photodynamic therapy (aPDT) is a method that does not seem to promote antimicrobial resistance. Photosensitizers (PS) conjugated with inorganic nanoparticles for the drug-delivery system have the purpose of enhancing the efficacy of aPDT. The present study was to perform a systematic review and meta-analysis of the efficacy of aPDT mediated by PS conjugated with inorganic nanoparticles. The PubMed, Scopus, Web of Science, Science Direct, Cochrane Library, SciELO, and Lilacs databases were searched. OHAT Rob toll was used to assess the risk of bias. A random effect model with an odds ratio (OR) and effect measure was used. Fourteen articles were able to be included in the present review. The most frequent microorganisms evaluated were Staphylococcus aureus and Escherichia coli, and metallic and silica nanoparticles were the most common drug-delivery systems associated with PS. Articles showed biases related to blinding. Significant results were found in aPDT mediated by PS conjugated with inorganic nanoparticles for overall reduction of microorganism cultured in suspension (OR = 0.19 [0.07; 0.67]/p-value = 0.0019), E. coli (OR = 0.08 [0.01; 0.52]/p-value = 0.0081), and for Gram-negative bacteria (OR = 0.12 [0.02; 0.56/p-value = 0.0071). This association approach significantly improved the efficacy in the reduction of microbial cells. However, additional blinding studies evaluating the efficacy of this therapy over microorganisms cultured in biofilm are required.

11.
ACS Biomater Sci Eng ; 8(8): 3187-3198, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35816289

RESUMO

Across years, potential strategies to fight peri-implantitis have been notoriously explored through the antimicrobial coating implant surfaces capable of interfering with the bacterial adhesion process. However, although experimental studies have significantly advanced, no product has been marketed so far. For science to reach the society, the commercialization of research outcomes is necessary to provide real advancement in the biomedical field. Therefore, the aim of this study was to investigate the challenges involved in the development of antimicrobial dental implant surfaces to fight peri-implantitis, through a systematic search. Research articles reporting antimicrobial dental implant surfaces were identified by searching PubMed, Scopus, Web of Science, The Cochrane Library, Embase, and System of Information on Grey Literature in Europe, between 2008 and 2020. A total of 1778 studies were included for quality assessment and the review. An impressive number of 1655 articles (93,1%) comprised in vitro studies, whereas 123 articles refer to in vivo investigations. From those 123, 102 refer to animal studies and only 21 articles were published on the clinical performance of antibacterial dental implant surfaces. The purpose of animal studies is to test how safe and effective new treatments are before they are tested in people. Therefore, the discrepancy between the number of published studies clearly reveals that preclinical investigations still come up against several challenges to overcome before moving forward to a clinical setting. Additionally, researchers need to recognize that the complex journey from lab to market requires more than a great idea and resources to develop a commercial invention; research teams must possess the skills necessary to commercialize an invention.


Assuntos
Anti-Infecciosos , Implantes Dentários , Peri-Implantite , Animais , Antibacterianos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Biofilmes , Humanos , Peri-Implantite/tratamento farmacológico
12.
Photodiagnosis Photodyn Ther ; 39: 102876, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35472640

RESUMO

BACKGROUND: The presence of oral microorganisms resistant to traditional treatment is increasing, thus a search for new therapies is needed. In this context, antimicrobial photodynamic therapy (aPDT) is an approach for the treatment of antibiotic resistant andnon resistant microorganisms. Therefore, the aim of the present study was to conduct a systematic review and meta-analysis of randomized clinical trials of aPDT for oral antisepsis against oral polymicrobial biofilms. METHODS: PubMed, Science Direct, Scopus, SciELO, Lilacs, Cochrane Library and Embase databases were searched. In total, five articles were included for qualitative analysis and four articles were used for quantitative analyses. Bias assessment of the eligible articles was made using the RoB 2 criteria. Network meta-analysis was performed using the random-effect model. Subgroup's analysis was also conducted. The groups evaluated were aPDT, exposure to light only and no treatment at all (control group). The quality of evidence was assessed by CINeMA approach. RESULTS: aPDT mediated by curcumin had significant results in the reducing bacterial load (0.31-0.49 log10 UFC/ I2=0%) when compared with the control group. The included articles were classified as low risk of bias, despite biases detected by allocation and blinding. Moreover, quantitative analysis between aPDT and control group and between light and control group were classified with low risk of confidence rating, while the results from aPDT versus light were classified as moderate risk of confidence rating. CONCLUSION: aPDT has significant efficacy for oral antisepsis, however more randomized clinical trials will be needed to validate the present results.


Assuntos
Anti-Infecciosos , Curcumina , Fotoquimioterapia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Antissepsia , Biofilmes , Curcumina/farmacologia , Curcumina/uso terapêutico , Metanálise em Rede , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328647

RESUMO

Considering the challenges related to antimicrobial resistance, other strategies for controlling infections have been suggested, such as antimicrobial photodynamic therapy (aPDT) and antimicrobial peptides (AMP). This study aims to perform a systematic review and meta-analysis to obtain evidence on the antimicrobial effectiveness of aPDT associated with AMP and establish in vitro knowledge on this topic for further study designs. The PubMed, Scopus, Web of Science, Science Direct, Scielo, and Cochrane Library databases were searched. Two independent and calibrated researchers (Kappa = 0.88) performed all the systematic steps according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The odds ratio (OR) was used as the effect measure. The Peto method was used to perform the meta-analysis due to the sparse data. Twenty studies were included in the present review. The result was significant (OR = 0.14/p = 0.0235/I-squared = 0%), showing better outcomes of aPDT associated with peptides than those of aPDT alone for controlling the microbial load. Only 20% of the studies included evaluated this approach in a biofilm culture. Combined treatment with aPDT and AMP highly increased the ability of microbial reduction of Gram-positive and Gram-negative bacteria. However, additional blind studies are required to evaluate the efficacy of this therapy on microbial biofilms.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Antibacterianos , Anti-Infecciosos/uso terapêutico , Peptídeos Antimicrobianos , Biofilmes , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
14.
Biofouling ; 37(9-10): 1006-1021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34789040

RESUMO

Fluconazole-sensitive (CaS) and -resistant (CaR) C. albicans were grown as single-species and dual-species biofilms with Lactobacillus casei (Lc) and Lactobacillus rhamnosus (Lr). Single-species Lc and Lr were also evaluated. Biofilm analysis included viable plate counts, the extracellular matrix components, biomass, and structural organization. Lc reduced the viability of CaS, water-soluble polysaccharides, and eDNA in CaS + Lc biofilm. Lc biofilm presented more eDNA than CaS. The total biomass of CaS + Lc biofilm was higher than the single-species biofilms. The viability of Lc and Lr was reduced by CaR dual-species biofilms. The total and insoluble biomass in CaS + Lr was higher than in single-species CaS biofilms. Lc hindered the growth of CaS, and their association hampered matrix components linked to the structural integrity of the biofilm. These findings allow understanding of how the implementation of probiotics influences the growth of C. albicans biofilms and thereby helps with the development of novel approaches to control these biofilms.


Assuntos
Candida albicans , Lacticaseibacillus casei , Biofilmes , Matriz Extracelular , Fluconazol/farmacologia
15.
Photodiagnosis Photodyn Ther ; 35: 102292, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33857598

RESUMO

The study evaluated the effect of antimicrobial photodynamic therapy (aPDT) and nystatin (NYS) in the expression of genes (ACT1, ALS1, CAP1, CAT1, EFG1, HWP1, LIP3, PLB1, SAP1, and SOD1) involved in the virulence of Candida albicans strains recovered from patients with denture stomatitis (DS). These strains were isolated from the patients before (initial) and after treatment (final), and 45 days after the treatments (follow-up). For gene expression analyses, RNA was isolated from the clinical strains, followed by cDNA synthesis and qPCR using specific primers for each target gene. The samples that present integrity were pooled to increase the RNA yield. In the end, four patients treated with aPDT and five patients treated with NYS had the clinical isolates of C. albicans submitted to gene expression evaluation. The data demonstrated a statistical difference in the expression of PLB1 and ACT1 for the different therapies (aPDT versus NYS). Also, there was a statistical difference in the expression of CAT1, SOD1, and LIP3 at the time intervals assessed (initial, final, and follow-up). In contrast, no statistical difference was found in the expression of ALS1, HWP1, EFG1, CAP1, CAT1, SOD1, LIP3, and SAP1 between the therapies, while no significant difference was detected at the time intervals evaluated for ALS1, HWP1, EFG1, CAP1, and SAP1. Therefore, the topical treatments for DS with aPDT or NYS did not effect the expression of most C. albicans virulence genes evaluated.


Assuntos
Fotoquimioterapia , Estomatite sob Prótese , Candida albicans/genética , Expressão Gênica , Humanos , Nistatina/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Estomatite sob Prótese/tratamento farmacológico
16.
Virulence ; 12(1): 231-243, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33410730

RESUMO

The emergence of resistance requires alternative methods to treat Candida albicans infections. We evaluated efficacy of the efflux pump inhibitor (EPI) verapamil (VER) with fluconazole (FLC) against FLC-resistant (CaR) and -susceptible C. albicans (CaS). The susceptibility of both strains to VER and FLC was determined, as well as the synergism of VER with FLC. Experiments were performed in vitro for planktonic cultures and biofilms and in vivo using Galleria mellonella. Larval survival and fungal recovery were evaluated after treatment with VER and FLC. Data were analyzed by analysis of variance and Kaplan-Meier tests. The combination of VER with FLC at sub-lethal concentrations reduced fungal growth. VER inhibited the efflux of rhodamine 123 and showed synergism with FLC against CaR. For biofilms, FLC and VER alone reduced fungal viability. The combination of VER with FLC at sub-lethal concentrations also reduced biofilm viability. In the in vivo assays, VER and FLC used alone or in combination increased the survival of larvae infected with CaR. Reduction of fungal recovery was observed only for larvae infected with CaR and treated with VER with FLC. VER reverted the FLC-resistance of C. albicans. Based on the results obtained, VER reverted the FLC-resistance of C. albicans and showed synergism with FLC against CaR. VER also increased the survival of G. mellonella infected with CaR and reduced the fungal recovery.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Fluconazol/farmacologia , Larva/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Verapamil/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Transporte Biológico , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Sinergismo Farmacológico , Larva/microbiologia , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Mariposas/microbiologia
17.
Photodiagnosis Photodyn Ther ; 33: 102155, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33444787

RESUMO

This investigation assessed the effect of five consecutive daily topical treatments of antimicrobial photodynamic therapy (aPDT), nystatin (NYS), and an association of treatments on a fluconazole-resistant strain of Candida albicans colonizing the tongues of mice. After the last treatments application, colonies of C. albicans were recovered from the tongues and used to determine their fluconazole susceptibility. After 24 hours of the last treatment, the mice tongues were processed to evaluate the expression of C. albicans genes related to the virulence and ergosterol production. The fluconazole susceptibility test yielded a resistance profile similar for all treatment groups and the control group (no treatment). The treatments aPDT, NYS, NYS+aPDT, and aPDT+NYS promoted a reduction in ALS1, EFG1, CAP1, SOD1, SAP1, and LIP3 expression. The expression of HWP1 was higher in the three groups containing nystatin. In contrast, the treatments produced a significative increase in CAT1 gene expression, mainly in the groups in which aPDT was performed. The expression of genes related to ergosterol production was significantly reduced by the treatments evaluated (aPDT, NYS, NYS+aPDT, and aPDT+NYS). Thus, the consecutive topical treatments performed on mice tongues promoted a reduction in the expression of virulence and ergosterol biosynthesis genes of a fluconazole-resistant C. albicans.


Assuntos
Fluconazol , Fotoquimioterapia , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans/genética , Ergosterol , Fluconazol/farmacologia , Camundongos , Nistatina/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Virulência
18.
Oral Health Prev Dent ; 18(1): 999-1010, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33215491

RESUMO

PURPOSE: This study investigated the effect of long-term daily chemical disinfection on the topographic and Candida albicans biofilm formation on a denture base resin and a reline acrylic resin. MATERIAL AND METHODS: Circular samples (14 × 1.2 mm) were fabricated from a denture base (Vipi Wave) and reline acrylic resins (Tokuyama Rebase Fast II). Samples were kept in 50 ml of distilled water (48 h at 37°C). Subsequently, the samples were immersed in five different solutions: 0.5% sodium hypochlorite; 3.8% sodium perborate; 2% chlorhexidine gluconate; apple vinegar containing 4% maleic acid; and distilled water (control group). The specimen was immersed in the solutions for 8 h daily and transferred to distilled water at 37°C for more 16 h. The surface topographic and Candida albicans (ATCC 90028) biofilm formation were evaluated at baseline (before chemical disinfection) and after 1, 3 and 6 months of immersion. The surface topographic was evaluated by arithmetical roughness average (Ra) and scanning electron microscope (SEM), while the biofilm formation was evaluated by colony-forming units (CFU/ml) method and Alamar Blue assay (cell metabolism). The results were evaluated by three-way analysis of variance (ANOVAs) and post-hoc tests (α = 0.05). RESULTS: The results showed statistically significant effects from the type of acrylic resin (p = 0.029) and time (p <0.001) on the roughness of the specimen. In general, the reline resin had higher roughness than the denture base resin. In addition, the roughness of the samples after 1, 3 and 6 months of immersion in the cleaning solutions was higher than at baseline. In relation to the microbiological assays, there were no statistically significant differences (p >0.055) in the CFU/ml values of the biofilms among the different resins, periods of time and cleaning solutions. Considering the metabolism of the cells within the biofilms, the results showed that, at baseline, it was statistically significantly higher (p <0.05) than after 1, 3 and 6 months of storage. The SEM images showed that all disinfectant solutions provided surface changes of both acrylic resins (base and reline) after 1, 3 and 6 months of immersion. CONCLUSIONS: The roughness of both acrylic resins was affected by the disinfection in all cleaning agents, increasing over time, and this effect was more evident in the reline acrylic resin group. This surface change was also observed in the SEM images. While the number of cells within the biofilms was not affected by immersion in the cleaning agents, their metabolism was lower after 1, 3 and 6 months of immersion.


Assuntos
Candida albicans , Desinfecção , Resinas Acrílicas , Biofilmes , Bases de Dentadura , Higienizadores de Dentadura/farmacologia , Teste de Materiais , Propriedades de Superfície
19.
Photodiagnosis Photodyn Ther ; 32: 102041, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33022417

RESUMO

OBJECTIVE: This randomized clinical trial assessed antimicrobial Photodynamic Therapy (aPDT) mediated by Photodithazine (PDZ) to treat patients with denture stomatitis (DS). METHODOLOGIES: Patients with DS were randomly assigned to the groups: aPDT (n = 30) and nystatin (NYS, n = 35). aPDT patients received 6 aPDT sessions, three times a week for 15 days, which involved PDZ (200 mg/L) topical application (20 min) on the palate and upper denture, followed by LED illumination (660 nm, 50 J/cm²). NYS patients were instructed to rinse one dropper of this medication for one minute, four times a day, for 15 days. Microbiological collections of dentures and palates were performed and cultured on blood agar and CHROMAgar Candida. Microbial viability was determined, and photographs of the palates were taken for clinical evaluation. Data were analyzed by Repeated Measure Linear Model and Bonferroni (p ≤ 0.05). RESULTS: aPDT was more effective to reduce the total microbiota than NYS. At the end of the treatments, aPDT reduced 1.98 from the palate and 1.91 log10 from the denture, while NYS reduced 0.05 and 0.17 log10, respectively. Moreover, aPDT was as effective as NYS to reduce Candida. Reductions of 0.68 and 0.77 log10 were observed in the palate and denture of aPDT group, while reductions of 0.57 and 1.43 log10 were achieved in the NYS group, respectively. Regarding to oral lesion, 53.3 and 54.2 % of the patients from aPDT and NYS groups had clinical improvement. However, the recurrence of DS was observed in both groups. CONCLUSION: PDZ-mediated aPDT is a promising treatment for DS.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Estomatite sob Prótese , Anti-Infecciosos/uso terapêutico , Glucosamina/análogos & derivados , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Estomatite sob Prótese/tratamento farmacológico
20.
Photodiagnosis Photodyn Ther ; 32: 102018, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33022418

RESUMO

Antimicrobial Photodynamic Therapy (aPDT) was introduced as a therapy due to resistance that microorganisms have developed to conventional drugs. The study aimed to evaluate the potential of successive applications of aPDT in effecting Candida albicans susceptibility and also whether the presence of fluconazole effected the recovery of the fungi in the culture medium. Planktonic cultures and biofilm were subjected to successive applications of Photodithazine-mediated (25 mg/L) LED-associated aPDT (660 nm, 34 mW/cm2). Plating was performed on Sabouraud Dextrose Agar supplemented or not with fluconazole to recover colony-forming units per milliliter (CFU/mL). Surviving cells were recovered, recultivated, and again exposed to the treatment. The treatments were performed until not enough colonies were available for recultivation and continuation of the protocol. The complete inactivation of the fungus was obtained after three and five applications for planktonic culture and biofilm, respectively. A reduction of 6.3 log10 was observed after third applications in the planktonic cultures grown on medium without fluconazole, while there was a 7 log10 reduction of these cultures grown on fluconazole medium. However, a reduction of 6.1 log10 occurred for biofilms after fifth applications for cultures grown on medium without fluconazole, while a reduction of 6.7 log10 was observed for cultures grown on medium with the antifungal. Thus, aPDT was potentiated by fluconazole. C. albicans in planktonic and biofilm cultures are susceptible to successive applications of PDZ-mediated aPDT, and tolerance to aPDT is higher in the biofilm.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Antifúngicos/farmacologia , Biofilmes , Candida albicans , Fluconazol/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...